SHORT COMMUNICATION

Uranium (IV) Fluorosulfate

L.M. EMME and G.L. GARD

Department of Chemistry, Portland State University, Portland, Oregon 97207 (U.S.A.)

The reactions of anhydrous transition metal oxychlorides or chlorides with peroxydisulfuryl difluoride ($S_2O_6F_2$) have provided a route for the preparation of transition metal fluorosulfates and oxyfluorosulfates [1, 2].

We have found that UCl $_4$ reacts with ${\rm S}_2{}^0{}_6{}^{\rm F}{}_2$ according to the following equation:

$$UC1_4 + 2S_2O_6F_2 = U(SO_3F)_4 + 2C1_2$$
 (1)

Uranium (IV) fluorosulfate is a tan crystalline solid that is hydrolytically unstable and is soluble in dimethylsulfoxide (DMSO) and acetonitrile. It begins to decompose in vacuo at around 90° and upon heating to 300° produces UF $_4$ in 69% yield.

The infrared spectrum of $\rm U(SO_3F)_4$ contains more absorption bands than may be ascribed to any one type of fluorosulfate group. It is known that for either monodentate bound $\rm SO_3F$ groups or bidentate $\rm SO_3F$ groups (either chelating or bridging) nine fundamental infrared bands are expected. For $\rm U(SO_3F)_4$, a monodentate $\rm SO_3F$ group is present as characteristic SO bands [3] are found at 1410, 1290 and 970 cm⁻¹ while additional SO bands at 1160 and 1080 cm⁻¹ are characteristic of a bidentate $\rm SO_3F$ group [4, 5]. The third S-O stretching mode expected for a bidentate $\rm SO_3F$ group is probably buried under the broad band centered at 1410 cm⁻¹. The presence of more than one type of $\rm SO_3F$ group is further supported by the presence of two bands

in the $800 - 900 \; \mathrm{cm}^{-1}$ region, where only S-F stretching modes occur in fluorosulfates.

The 19 F nuclear magnetic resonance spectrum of U(SO $_3$ F) $_4$ in DMSO consists of a singlet at -39.6 ppm relative to CFCl $_3$ (internal standard). The singlet 19 F peak shows that all SO $_3$ F groups are rapidly exchanging with solvent.

While we were preparing this paper the first uranium fluorosulfate, $UF_2(SO_3F)_3$, was reported [6].

EXPERIMENTAL

 $\rm S_2O_6F_2$ was obtained as a gift from Professor F. Aubke, Department of Chemistry, University of British Columbia, Vancouver B.C. The infrared spectrum agreed with published values. UCl_4 was purchased as an anhydrous solid (99%) from Research/Inorganic Chemical Company and was used without further purification.

Infrared spectrum was recorded with a Perkin-Elmer model 467 i.r. spectrophotometer. The spectrum of ${\rm U(SO_3F)_4}$ was obtained neat between AgCl windows. The X-ray pattern was obtained using an XRD-5 General Electric Powder camera. The sample was contained in a 0.5 mm capillary. The fluorine nmr spectrum was obtained with a Varian HA-100 nmr spectrometer.

Preparation of U(SO3F)4

To 1.850 mmol of UCl₄ in a 50 ml Pyrex-glass vessel equipped with a Kontes Teflon stopcock, 38.77 mmol of $S_2O_6F_2$ was added. In addition to Cl₂, a tan product [1.883 mmol of U(SO₃F)₄] was formed at r.t. (8.3 d) in 100% yield (nc); dec. 90°. Calcd. for U(SO₃F)₄: F, 12.0; S, 20.2; U, 37.5. Found: F, 12.2 S, 19.7; U, 38.2.

The infrared spectrum showed the following bands (cm^{-1}) : 1410 (s, vb), 1290 (s,b), 1160 (s,b), 1080 (s), 970 (m-w), 870 (m) 835 (m), 710 (w), 585 (m), 560 (m). With KRS-5 windows, an additional band at 400 (w) cm⁻¹ is observed.

The powder spectrum gave the following d values (in Å) with their respective intensities: 4.37 (s), 4.10 (m), 3.64 (m), 3.22(m), 2.73 (s), 2.12 (m), 1.98 (m), 1.79 (s), 1.73 (m).

Decomposition of U(SO3F)4

1.308 mmol of $\rm U(SO_3F)_4$ in a 50 ml Pyrex-glass vessel equipped with a Kontes Teflon stopcock was heated from r.t. to 300° for two hours while pumping away volatile materials through a trap cooled to -195°. A white solid and an orange solid condensed in the trap. The material in the -195° trap gave upon hydrolysis a positive test for $\rm SO_4$ ions. A bright green solid (0.8990 mmol of UF₄, 69% yield) remained in the 50 ml vessel. Calcd. for UF₄: F, 24.2; U, 75.8. Found: F, 24.5; U, 75.6.

- 1 G.C. Kleinkopf and J.M. Shreeve, Inorg. Chem., 3 (1964) 607.
- 2 W.V. Rochat and G.L. Gard, Inorg. Chem., 8 (1969) 158.
- 3 H.A. Carter, S.P.L. Jones, and F. Aubke, Inorg. Chem., 9 (1970) 2485.
- 4 A. Storr, P.A. Yeats and F. Aubke, Can. J. Chem., <u>50</u> (1972) 452.
- 5 P.A. Yeats, B.L. Poh, B.F.E. Ford, J.K. Sams and F. Aubke, J. Chem. Soc. (A), (1970) 2188.
- 6 W.W. Wilson, C. Naulin, and R. Bougon, Inorg. Chem., <u>16</u> (1977) 2252.